skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, Abe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile Augmented Reality (AR) offers a powerful way to provide spatially-aware guidance for real-world applications. In many cases, these applications involve the configuration of a camera or articulated subject, asking users to navigate several spatial degrees of freedom (DOF) at once. Most guidance for such tasks relies on decomposing available DOF into subspaces that can be more easily mapped to simple 1D or 2D visualizations. Unfortunately, different factorizations of the same motion often map to very different visual feedback, and finding the factorization that best matches a user’s intuition can be difficult. We propose an interactive approach that infers rotational degrees of freedom from short user demonstrations. Users select one or two DOFs at a time by demonstrating a small range of motion, which we use to learn a rotational frame that best aligns with user control of the object. We show that deriving visual feedback from this inferred learned rotational frame leads to improved task completion times on 6DOF guidance tasks compared to standard default reference frames used in most mixed reality applications. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. Our bodies are constantly in motion—from the bending of arms and legs to the less conscious movement of breathing, our precise shape and location change constantly. This can make subtler developments (e.g., the growth of hair, or the healing of a wound) difficult to observe. Our work focuses on helping users record and visualize this type of subtle, longer-term change. We present a mobile tool that combines custom 3D tracking with interactive visual feedback and computational imaging to capture personal time-lapse, which approximates longer-term video of the subject (typically, part of the capturing user’s body) under a fixed viewpoint, body pose, and lighting condition. These personal time-lapses offer a powerful and detailed way to track visual changes of the subject over time. We begin with a formative study that examines what makes personal time-lapse so difficult to capture. Building on our findings, we motivate the design of our capture tool, evaluate this design with users, and demonstrate its effectiveness in a variety of challenging examples. 
    more » « less